- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Carbone, Paris (1)
-
Hu, Kaitian (1)
-
Huang, Lei (1)
-
Kalavri, Vasiliki (1)
-
Lan, Zhaoqian (1)
-
Lei, Yanfei (1)
-
Mei, Yuan (1)
-
Wang, Feng (1)
-
Xia, Rui (1)
-
Yin, Han (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present Apache Flink 2.0, an evolution of the popular stream processing system's architecture that decouples computation from state management. Flink 2.0 relies on a remote distributed file system (DFS) for primary state storage and uses local disks as a secondary cache, with state updates streamed continuously and directly to the DFS. To address the latency implications of remote storage, Flink 2.0 incorporates an asynchronous runtime execution model. Furthermore, Flink 2.0 introduces ForSt, a novel state store featuring a unified file system that enables faster and lightweight checkpointing, recovery, and reconfiguration with minimal intrusion to the existing Flink runtime architecture. Using a comprehensive set of Nexmark benchmarks and a large-scale stateful production workload, we evaluate Flink 2.0's large-state processing, checkpointing, and recovery mechanisms. Our results show significant performance improvements and reduced resource utilization compared to the baseline Flink 1.20 implementation. Specifically, we observe up to 94% reduction in checkpoint duration, up to 49× faster recovery after failures or a rescaling operation, and up to 50% cost savings.more » « lessFree, publicly-accessible full text available August 1, 2026
An official website of the United States government
